Investigations on the Theory of Riemann Zeta Function II: On the Riemann-Siegel Integral and Hardy’s Z-Function
نویسندگان
چکیده
منابع مشابه
On the Riemann Zeta-function and the Divisor Problem Ii
Let ∆(x) denote the error term in the Dirichlet divisor problem, and E(T ) the error term in the asymptotic formula for the mean square of |ζ( 1 2 + it)|. If E∗(t) = E(t) − 2π∆∗(t/2π) with ∆∗(x) = −∆(x) + 2∆(2x) − 1 2 ∆(4x), then we obtain ∫ T 0 |E(t)| dt ≪ε T 2+ε and ∫ T 0 |E∗(t)| 544 75 dt ≪ε T 601 225 . It is also shown how bounds for moments of |E∗(t)| lead to bounds for moments of |ζ( 1 2 ...
متن کاملq-Riemann zeta function
We consider the modified q-analogue of Riemann zeta function which is defined by ζq(s)= ∑∞ n=1(qn(s−1)/[n]s), 0< q < 1, s ∈ C. In this paper, we give q-Bernoulli numbers which can be viewed as interpolation of the above q-analogue of Riemann zeta function at negative integers in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Also, we will treat some...
متن کاملOn the Function S ( T ) in the Theory of the Riemann Zeta - Function
The function S(T) is the error term in the formula for the number of zeros of the Riemann zeta-function above the real axis and up to height Tin the complex plane. We assume the Riemann hypothesis, and examine how well S(T) can be approximated by a Dirichlet polynomial in the Lz norm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of Mathematical Sciences and Applications
سال: 2013
ISSN: 2278-9634
DOI: 10.18052/www.scipress.com/bmsa.5.27